CHOWDAVARAM, GUNTUR-19

B.Tech., Computer Science & Engineering (Data Science)

(w.e.f. the academic year 2021-2022)

Scheme (R20)

S. No.	Course Code	Course		Hours Per Week		Schen	ne of Exa	Category	
		Title	L	Т	Р	SES	EXT	Credits	Code
1	CD311	Automata and Compiler Design	2	1	-	30	70	3	PC
2	CD312	Data Communications and Networking	3	-	-	30	70	3	PC
3	CD313	Machine Learning	2	1	-	30	70	3	PC
4	CD314	Distributed and Cloud Computing	3	-	-	30	70	3	PE
	(CDEL02)	(Professional Elective-I)							
5	CD315	Business Intelligence Tools	3	-	-	30	70	3	OE
	(JOEL26)	(Open/Job Oriented Elective-I)							
6	CD351	Machine Learning Lab	-	-	2	30	70	1.5	РС
7	CD352	Distributed and Cloud Computing Lab	-	-	2	30	70	1.5	PC
		(Professional Elective-I lab)							
8	CD353	Summer Internship	-	-	-	100	-	1.5	PR
9	CDSL3	Softskills	1	-	2	100	-	2	SC
		(Skill Oriented Course-III)							
10	CDV	Smart Coding and Practicing							
		Total	14	2	6	410	490	21.5	

Semester V (Third Year)

Category	Credits
Skill Course	2.0
Professional Core Course	13.5
Professional Elective	3.0
Open Elective	3.0
Total credits	21.5

Chowdavaram, Gunutr-19

B.Tech., Computer Science & Engineering (Data Science)

(w.e.f. the academic year 2021-2022) Syllabus (R20) - Semester V (Third Year)

CD311Automata and Compiler DesignLTPC2103

Course Objectives:

The main objectives of this course are to:

- 1. Introduce the types of Finite Automata and properties of Regular Expressions.
- 2. Explain Context-Free Grammars and Push Down Automata
- 3. To discuss the phases of compiler.
- 4. To demonstrate parsing techniques and syntax direct translation schemes.
- 5. To teach the intermediate code forms and code generation.

Course Outcomes:

The students will able to:

- 1. Explain the fundamental concepts of Automata and Formal languages. .
- 2. Apply the knowledge of Automata Theory, Formal languages, Grammars & Regular Expressions for solving various problems. Design PDAs for various languages.
- 3. Demonstrate through knowledge on the phases of compiler and Implement Parsers.
- 4. Write different SDT schemes and Design code generator through optimized intermediate code forms and apply the various code optimization methods, and runtime allocation strategies.

Course Content:

UNIT – I

Finite Automata: Introduction, An Informal picture of finite automata, Deterministic finite automata (DFA) - Definition, notations and the language of DFA, Non deterministic finite automata (NFA) – Definition, notations and the language of NFA, Equivalence of DFA and NFA Finite Automata and Regular Expressions- Converting DFA to Regular Expressions, converting Regular Expressions to Automata, Closure Properties of Regular Languages.

Context Free Grammars: Context Free Grammars, Parse Trees, Constructing parse trees, derivations and parse trees, ambiguous grammars.

Context free languages: Normal form's for context- Free grammars, the pumping lemma for context free languages.

UNIT – II

(CO-2) 12 Periods

(CO-1) 12 periods

Pushdown Automata: Definition of the Pushdown automata, the languages of PDA, Equivalences of PDA's and CFG's.

Introduction to Compiling: Compilers - Analysis of the source program - Phases of a compiler-Cousins of the Compiler - Grouping of Phases.

Lexical Analysis: Role of Lexical Analyzer - Input Buffering –The Lexical Analyzer Generator-LEX, Use of Lex, structure of LEX program.

UNIT – III

(CO-3) 12 Periods

Syntax Analysis: Introduction: Role of the parser - Top-Down parsing, Predictive parsing, LL (1) Parser.

Bottom-up parsing - Shift Reduce Parsing, LR Parsers - SLR Parser, Canonical LR Parser, and LALR Parser- The Parser Generator-YACC.

R V R & J C COLLEGE OF ENGINEERING (Autonomous), Chowdavaram, Gunutr-19 B.Tech., Computer Science & Engineering (Data Science) (w.e.f. the academic year 2021-2022)

Syllabus (R20) - Semester V (Third Year)

UNIT – IV

(CO-4) 10 Periods

Syntax Directed Translation: Syntax Directed definition- construction of syntax trees, Bottom-up evaluation of S-attribute Definitions-L-attribute Definitions, Intermediate Code Generator – Register and address descriptors.

Code Generation: Issues in the design of code generator, a simple Code generator.

Code Optimization: Introduction, Peephole Optimization.

Learning Resources:

Text Books:

- 1. Introduction to Automata Theory, Languages, and Computation John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman.
- 2. Compilers: Principles, Techniques and Tools, V. Aho, R. Sethi and J. Ullman.

Reference Books:

- 1. Elements of the Theory of Computation, Harry R. Lewis and Christos H.Papadimitriou.
- 2. Automata and Computability, Dexter C.Kozen.
- 3. Alfred V.Aho, Jeffrey D. Ullman, Principles of Compiler Design, Narosa publishing, 2002.
- 4. Lex&Yacc John R. Levine, Tony Mason, Doug Brown, 2nd Edition, O'reilly.
- 5. Engineering a Compiler Keith Cooper & Linda Torezon, 2nd Edition Elsevier.

R V R & J C COLLEGE OF ENGINEERING (Autonomous), Chowdavaram, Gunutr-19

B.Tech., Computer Science & Engineering (Data Science)

(w.e.f. the academic year 2021-2022)

Syllabus (R20) - Semester V (Third Year)

CD212	Data Communications and Naturaling	L	Т	Ρ	С
CD312	Data Communications and Networking	3	0	0	3

Course Objectives:

- 1. To understand the concept of data communication, data link layer design issues, and protocol architecture of OSI & TCP/IP model and process between computer networks and switching components in telecommunication systems.
- 2. To understand the features of various protocol layers.
- 3. To understand various routing and congestion control algorithms.
- 4. To understand the transport and application layer protocols.

Course Outcomes:

After successful completion of the course student shall be able to:

- 1. Describe the basics of data communication and computer networks.
- 2. Illustrate the working of Data link layer in computer networks.
- 3. Compare protocols used in Network layer of the computer network models for communication.
- 4. Analyze the services and features of Transport and Application layers in networks.

Course Content:

UNIT – I

(CO1) (13 Periods)

Introduction: Data communications, Uses of Computer networks, Networks, the internet, protocols and standards, layered tasks, the OSI model, layers in the OSI model, TCP/IP Protocol suite, addressing, Physical Layer: Transmission Media-Guided and Unguided, Multiplexing-FDM, WDM, TDM, Switching.

UNIT – II

Data Link Layer: Data Link Layer design issues, Error Detection and Correction, Elementary Data link Protocols, Sliding window protocols.

Medium Access Control Sublayer: The channel Allocation problem, Multiple Access Protocols, Ethernet.

UNIT – III

(CO3) (15 Periods)

(CO4) (12 Periods)

(CO2) (15 Periods)

Network layer: Network layer Design Issues, Routing Algorithms - (The Optimality Principle, Shortest Path Routing, Flooding, Distance Vector Routing, Link State Routing, Hierarchical Routing, Broadcast Routing, Multicast Routing and Routing for Mobile Hosts). Congestion Control Algorithms, Quality of Service- Requirements, Techniques for Achieving Good Quality of Service. Internetworking, IPv4 Vs IPv6.

UNIT – IV

Transport Layer: Elements of Transport Protocols- – addressing: Connection Establishment, Connection Release, Error Control and Flow Control, UDP, RTP, TCP- Introduction to TCP, The TCP Service Model, The TCP Protocol, The TCP Segment Header, TCP Connection Establishment, TCP Connection Release.

Application Layer: DNS, Electronic Mail, HTTP, The World Wide Web - Architectural Overview.

R V R & J C COLLEGE OF ENGINEERING (Autonomous), Chowdavaram, Gunutr-19 B.Tech., Computer Science & Engineering (Data Science) (w.e.f. the academic year 2021-2022) Syllabus (R20) - Semester V (Third Year)

Learning Resources:

Text Books:

- 1. Data Communication and Networking, Behrouz A. Forouzan, Tata McGraw-Hill, 4th Edition, 2010.
- 2. Computer Networks, A.S.Tanenbaum, 4th Edition, Pearson education.

Reference Books:

- 1. Introduction to Data communications and Networking, W.Tomasi, 4th Edition, Pearson Education.
- 2. Computer Networking A top down approach featuring the Internet, J.F.Kurose and K.W.Ross, Pearson Education, 5th Edition.
- 3. Computer Networks A Systems Approach, L.Peterson and B. Davie, Elsevier Morgan Kaufmann publisher, 5th Edition.

Chowdavaram, Gunutr-19

B.Tech., Computer Science & Engineering (Data Science)

(w.e.f. the academic year 2021-2022)

Syllabus (R20) - Semester V (Third Year)

CD313	Mashina Laarning	L	Т	Ρ	C 3	
CD313	Machine Learning	2	1	0		

Course Objectives:

Explore the knowledge on

- 1. Basic concepts and applications of machine learning.
- 2. Supervised learning and its applications
- 3. Unsupervised learning and its applications
- 4. Multilayer perceptions and kernel tricks

Course Outcomes:

After successful completion of the course student shall be able to:

- 1. Apply the machine learning concepts in real life problems
- 2. Design solutions for supervised learning problems
- 3. Use rule sets and reinforcement learning to solve real world problems
- 4. Discuss the issues in dimensionality reduction and unsupervised learning algorithms.

Course Content:

UNIT – I

Introduction: Well posed learning problems, Designing a Learning System, Perspectives and Issues in machine learning.

Concept Learning and general to specific ordering: concept learning Task , Concept learning as a search, Finding a Maximally Specific Hypothesis , Version Spaces and Candidate Elimination Algorithm, Remarks on Version space and candidate elimination.

Bayesian Learning: Bayes Theorem, Maximum Likelihood and Least Square Error Hypotheses, Bayes Optimal Classifier, Naïve-Bayes Classifier, Bayesian Belief Network

UNIT – II

Decision Tree Learning : Decision Tree Representation, appropriate problems for decision tree, the basic decision tree Algorithm, Issues in decision tree learning.

Artificial Neural Networks: Introduction, Neural Network Representation, appropriate problems for neural network, Perceptrons, Multilayer Networks and the Back Propagation Algorithm.

Instance Based Learning: Introduction, KNN Learning, Locally Weighted Regression, Radial Bias Functions, Case-Based Reasoning.

UNIT – III

Learning Sets of Rules: Sequential Covering Algorithm, Learning Rule Sets: summary, Learning First Order Rules, Learning set of first order rules: FOIL.

Reinforcement Learning: Introduction, the Learning Task, Q Learning, Non Deterministic Rewards and Actions, Temporal Difference Learning, Generalizing from Examples, Relationship to Dynamic Programming.

(CO2) (12 Periods)

(CO1) (12 Periods)

(CO3) (12 Periods)

R V R & J C COLLEGE OF ENGINEERING (Autonomous), Chowdavaram, Gunutr-19 B.Tech., Computer Science & Engineering (Data Science) (w.e.f. the academic year 2021-2022) Syllabus (R20) - Semester V (Third Year)

UNIT – IV

(CO4) (12 Periods)

Dimensionality Reduction: Introduction, subset selection, Principal component analysis, Feature Embedding, Factor analysis, Singular Value Decomposition and Matrix factorization, Multidimensional Scaling, Linear Discriminant analysis, Canonical correlation analysis.

Clustering: Introduction, Mixture Densities, K-Means Clustering, Expectation-Maximization Algorithm, Mixtures of Latent Variable Models, Supervised Learning after Clustering, Spectral Clustering, Hierarchical Clustering, Choosing the Number of Clusters.

Learning Resources:

Textbook:

- 1. Tom M. Mitchell, —Machine Learning, McGraw-Hill Education (India) Private Limited, 2013. (UNIT I, UNIT II, and UNIT II)
- 2. Ethem Alpaydin, Introduction to Machine Learning, MIT Press, Prentice Hall of India, Third Edition 2014. (UNIT IV)

Reference Books:

- 1. Stephen Marsland, —Machine learning: An Algorithmic Perspective , CRC Press, 2009.
- 2. Machine Learning: a Probabilistic Perspective, Kevin P. Murphy, MIT Press, 2012.
- 3. Foundations of Machine Learning, Mehryar Mohri, Afshin Rostamizadeh and Ameet Talwalkar, MIT Press, 2012.
- 4. Machine Learning -The Art and Science of Algorithms that Make Sense of Data, Peter Flach, Cambridge.

Chowdavaram, Gunutr-19

B.Tech., Computer Science & Engineering (Data Science)

(w.e.f. the academic year 2021-2022) Syllabus (R20) - Semester V (Third Year)

L Т Ρ С CD314 **Distributed and Cloud Computing** 3 0 0 3

Course Objectives:

- 1. To learn about the concepts of distributed systems and distributed resource management.
- 2. To study the concepts cloud computing
- 3. To study about virtualization and cloud resource management
- 4. To understand the concepts of different platforms.

Course Outcomes:

On completion of the course, the students will be able to:

- 1. Appreciate distributed Computing, distributed resource management.
- 2. Develop the ability to understand and use the architecture of compute and storage cloud, service and delivery models.
- 3. Choose the appropriate technologies, algorithms and approaches for implementation and use of cloud.
- 4. Explain the core issues of cloud computing such as resource management and security.

Course Content:

UNIT-I

Introduction to Distributed System Concepts: Introduction to Distributed Systems-Characteristics-Issues in Distributed Systems-Distributed System Model-Request/Reply Protocols-RPC-RMI- Software Environments for Distributed Systems- Performance, Security and Energy Efficiency – Performance metrics, Fault tolerance, network threats – Energy efficiency in Distributed Computing

UNIT – II

Introduction to Cloud Computing:

Introduction to Cloud Computing, Evolution of Cloud Computing, Cloud Characteristics, Elasticity in cloud -On-demand Provisioning, NIST Cloud Computing

Reference Architecture, Architectural Design Challenges, Deployment Models: Public, Private and Hybrid Clouds, Service Models: laas, Paas, Saas, Benefits of Cloud Computing.

UNIT – III

Cloud Enabling Technologies:

Virtualization - Implementation levels of Virtualization – Levels, VMM, Design Requirements and Providers, Virtualization support at OS Level, Middleware Support for Virtualization – Full and Para Virtualization, CPU Virtualization, Memory Virtualization, I/O Virtualization.

Cloud Software and Computing Platforms: GAE(Google APP Engine), Programming Environment for GAE, Architecture of GFS, Amazon EC2, Amazon Web Services, Microsoft Azure.

(CO1) (12 Periods)

(CO2) (13 Periods)

(CO3) (14 Periods)

Chowdavaram, Gunutr-19

B.Tech., Computer Science & Engineering (Data Science) (w.e.f. the academic year 2021-2022)

Syllabus (R20) - Semester V (Third Year)

UNIT – IV

(CO4) (13 Periods)

Cloud Management, Storage and Security:

Resource Provisioning Methods, Cloud Management Products, Cloud Storage, Provisioning Cloud Storage, Managed and Un Managed Cloud Storage

Cloud Security: Overview, Cloud Security Challenges, Security Architecture Design, Virtual Machine Security, Application Security, Data Security.

Learning Resources:

Text Books:

- 1. Andrew S.Tanennbaum, Maarten Van Steen,"Distributed Systems -Principles and Paradigms", Second Edition, Pearson, 2006
- 2. Kai Hwang Geoffrey C. Fox Jack J. Dongarra "Distributed and Cloud Computing: From Parallel Processing to the Internet of Things".

Chowdavaram, Gunutr-19

B.Tech., Computer Science & Engineering (Data Science)

(w.e.f. the academic year 2021-2022) Syllabus (R20) - Semester V (Third Year)

CD315	Business Intelligence Tools	L T P	С		
CD315	business intelligence roois	3	0	0	3

Course Objectives:

- 1. To understand the concepts of Business intelligence.
- 2. To understand the relevance of Data Visualization in Business.
- 3. To provide hands on working with Tableau software.
- 4. To understand the methods of presentation, creating dashboards and animations.

Course Outcomes:

After successful completion of the course student shall be able to:

- 1. Apply visualization techniques for various data analysis tasks.
- 2. Presenting data through charts and maps.
- 3. Design information dashboard.

Course Content:

UNIT – I

(CO1) (12 Periods)

Definition of BI – Historical Perspective of BI- Architecture of BI- Data Warehouse, Business Analytics, Business Performance Management, User Interface, Cyclical process of a business intelligence analysis.

Data and Information Visualization - A brief history of Data Visualization- Data Visualization for businesses- Different types of Charts- Business Activity Monitoring through Dashboard - Emergence of Data Visualization and Visual Analytics.

UNIT – II

(CO1) (12 Periods)

Working with Tableau Data Source and Basic Charts: Introduction to Tableau, Connecting to Data Source: Text Files, Excel, Access, other databases, merging multiple data sources.

Univariate Charts – Creating tables, bar graphs, pie charts, histograms, line charts, stacked bar graphs, box plots, Showing aggregate measures.

Bivariate Charts – Creating tables, scatter plots, swapping rows and columns, adding trend lines, selecting color palettes, using dates.

Multivariate Charts and Maps: Facets, area charts, bullet graphs, dual axes charts, Gantt charts, heat maps, Maps – Setting geographical roles, placing marks on map, overlaying demographic data, choropleth maps, polygon shapes, customizing maps.

UNIT – III

(CO2) (12 Periods)

(CO3) (12 Periods)

User defined fields: Using predefined fields, calculating percentages, applying if-then logic, applying logical functions, showing totals and percentages, discretizing data, manipulating text, aggregate data.

UNIT – IV

Customization: Adding title and caption, font size and colors, adding various marks, adding reference lines, using presentation mode, adding annotation, adding drop-down selectors, search box selectors, slider selectors, creating dashboards, creating animated visualization.

R V R & J C COLLEGE OF ENGINEERING (Autonomous), Chowdavaram, Gunutr-19 B.Tech., Computer Science & Engineering (Data Science) (w.e.f. the academic year 2021-2022) Syllabus (R20) - Semester V (Third Year)

Learning Resources:

Text Books:

- 1. Efraim Turban, Ramesh Sharda, Dursun Delen, "Decision Support and Business Intelligence Systems", Pearson.
- 2. Nandeshwar, A., Tableau Data Visualization Cookbook, Mumbai: PACKT / Shroff Publishers.
- 3. Iliinsky, N. & Steele, J., Designing Data Visualizations, Mumbai: O"Reilly / Shroff Publishers.
- 4. Milligan, N.J., Learning Tableau, Mumbai: PACKT / Shroff Publishers.
- 5. Jones, B., Communicating Data with Tableau, Mumbai: PACKT / Shroff Publishers.
- 6. Yau, N., Visualize This: The Flowing Data Guide to Design, Visualization, and Statistics. John Wiley & Sons.